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An uapproach s preseated for estimating density from line transect data where the animals move away
in response to the observer. This estimation method involves fitting the perpendicular sighting distances
to the Weibhull distribution. Estimates of the Weibull parameters are incorporated into the density
estimate. When movement exists, even light movement, this method greatly outperforms the Fourer
sertes estimater. It also outperforms the Fourier series estimator in some low density situations when
there 1s no movement. The Weibull method shows promise for estimating density in the presence of
movement and f{urther development is planned. } .

l. INTRODUCTION

Line transect sampling is commonly used as a practical means for estimating the
density of objects in an area. Current analytical methods for data from line
transect sampling assume that the objects of interest do not move in response to
the observer. However, if the objects are animals, it is not uncommon for them to
move in response to the observer prior to being observed. Usually the response is
to move away from the observer, but less commonly they can be attracted towards
the observer. We concern ourselves only with the more frequently encountered
situation where the animals are moving away from the observer (and hence -the
transect line). In the presence of movement, perpendicular distance measurements
from the line to the animal tend to be longer than if the animal had not responded
to the observer.

We briefly describe density estimation using perpendicular distance data from
the line transect sampling. Burnham, Anderson and Laake (1980) present a
comprehensive discussion of density estimation from line transect sampling.
Because that publication is one of the standard references for line transect
sampling, we follow their notation closely. We present a possible approach to
density estimation when there is movement in response to the observer and
examine its potential through a simulation study that compares it to the Fourer
Series estimator (Crain et al., 1978).
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2. ESTIMATION WITHOUT MOVEMENT

Wh:n measuring perpendicular distances to objects from a line transect, the
exnested number of objects detected in a strip of width w (on either side of the

transect), and length L is

E(n)=D2wLP,, (1)

where D is the density of objects and P, is the unconditional average detection
probability. An estimate of density is (Burnham et al., 1980)

« n
D= —. 2
2wlLP, (2)

[n the absence of movement in response to the observer. P, in Eq. (2) is defined as

w

P.=1/w] g(x)dx, (3)

0

where g(x) 1s the sighting function describing the detectability of the objects at
distance x from the transect line. The 1/w term arises from the assumption that,
without movement, if all objects were sighted. then their distances from the
caadomly placed transect would be distributed uniformly on the interval (0, w).
(he sighting function, g(x), is considered to be monotonically nonincreasing with
the assumption that g(0)=1. This assumption implies that all objects that fall
iitrectly on the line are detected with probability 1. A probability density function
(pd '), f(x), can be defined as

f(x)= _M_ = __é’_‘«fl,_ (4)

Uwlg(x)dx | glx)dx
0 o

The assumption that g(0)=1 implies that

or

” {
—— 5
gg(x) dx 0 (5)

After estimating f(0) based on the observed perpendicular distances and substitut-
ing Eqgs. (3) and (3) into Eq. (2), we have the estimate of density
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n

5 _n/0)
D= (6)

\)

19

Many methods have been proposed for estimating f(0) (e.g., see Burnham et al,
1980 and Seber, 1986). The Fourier series estimator of Crain et al. (1978) is one of
the most flexible and widely accepted methods (Burnham et al.. 1980 and Seber,

[1986).

3. AN APPROACH TO THE MOVEMENT PROBLEM

[f anmimals move away from the linc in response to the observer, then the
conditional distribution of their distances to the randomly placed transect is no
longer uniform and Eq. (3) 1s rewritten as (see Burnham et al., 1980)

P, = J glx)h(x ( w) dx. ‘ (7
0

where hlx:w) is the conditional pdf of perpendicular distances after movement
and m used us a subscript denotes movement. Now f(x) is related to P, by

jm( X)= g(_'_v)h(_'\ll_‘_v_) = kg(x) h(x I w). (8)

g(x)h(x|w)dx

O'*—{l

where & 1s a constant denoting the reciprocal of the definite integral in the
denominator. An esiimate of P, can no longer be found by estimating f(0).

[t may not be unreasonable to assume that if animals are moving away from the
line in response to the observer, then the probability of observing an animal on
the line 1s 0. The assumption that g(0)=1 is maintained. but h(0| w)=0 and

g(0)h(0 [w)

Jml0)=; =0. (9)

jg(x)h(xl w) dx
0

Obviously, the pd f in Eq. (8) should be of a functional form that fits the observed
perpendicular distance data where movement has occurred. One candidate is the
pd f for the Weibull distribution:

b
fw(x)=‘%x”"cxp(—<;—:> ), (10)

where x>0, a>0, b>0. It should be noted that Ramsey (1979) discussed a



148 R. M. ENGEMAN AND J. F. BROMAGHIN

“detectability curve kernel” based on the Weibull distribution (also described by
Poilock, 1978, as the exponential power family), however the observed distances
Jit 0t follow the Wetbull distribution, nor was the issue of animal movement

simrdered.
We next define f (x) in terms of Eq. (8). If we let

g(x)=exp(—<'§> ) (11)

ther gt =1, and g(x) is an exponential decay, which was used by Gates et al.
‘) for a sighting function n the first probabilistic development of line transect

analvses. We then let
h(x|w)=x""" (12)

~hich allows h(O} w) =0,
Consider now that Eq. (10) is of the form given in Eq. (8), that is

hb A cxp(—("-) ):g(x)h(x | w) »—--—1————. (13)
u . \4 __

Ie Yhix|w)d.

witned g(x) =exp( —(x/d)’) and h(x| wy=x"""! leaving

b 1 1

R = (14)
J'g(t)h(x| wydx
0

Substituting into Eq. (2) we have

n 1 _ nd (15)
2wl (b/a®) 2wLb

D=

where a and b are the Weibull parameters to be estimated using observed
perpendicular distances.

4. SIMULATION STUDY

The performance of the method described in the preceding section (which we refer
in 15 the Weibull method) was examined through a Monte Carlo simulation study.
The Fourier series method for estimating density in Eq. (6) was used as a standard
of comparison due to its widespread acceptance (Seber, 1986) as one of the
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“preferred™ estimators (e.g., it is the default method for program TRANSECT;
Laake, Burnham and Anderson, 1979).

4.2 Simulation Setup

We designed a simulation study to examine the performance of the Weibull and
Fourier estimators over a range of population densities with several levels of
movement In response to an observer. We considered two shapes for the sighting
function with three parameterizations of each to represent different sighting
abilities.

Three densities of objects were considered for computer simulatioa: 2, 4, 8. For
a specified area of width W and length L, the number of objects needed to achieve
a density D is n=2 W L D. Using the BASIC internal random number generator
(TRS-XENIX operating system MBASIC), a population of objects (coordinates)
was generated for the specified density, length and width of a survey area. A new
seed was supplied for cach random number generated. Previous extensive testing
by the authors indicated close conformation of the generated numbers to a
uniform (0. 1} distribution. Multiplying the uniform (0, 1) numbers by W produces
object distances located such that their distances from the transect line were
distributed uniformly over the interval (0, W). Note that because the estimation
methods are not concerned with which side of the transect line an object occurs,
we need only have the n objects distributed over (0, W) but the total width is still
2W for estimation purposes. A new population of objects was created at each
iteration of a simulation run.

At each iteration, a sample of objects was randomly selected by applying one of
two sighting functions. The first sighting function resembles many of the data sets
we have seen in practice {where no observer related movement is detectable) and is

based on the following tunction
exp(—x¥/p,). (16)

where x is the perpendicular distance from the transect and p, is a user specified
parameter that determines sighting ability. Thus, the probability that an object will
be included in the sample follows the shape of half of a normal distribution. Three
values for p, were selected for simulating a variety of sighting abilities: 0.5, 1.5, and

3.0.
An alternate shape for the sighting function which also resembles field data is

the following exponential decay
exp(—x/p.), (17)

where x again is the perpendicular distance to the transect and p, is a user
specified parameter that determines sighting ability. Three values were also

considered for p.; 0.5, 0.75. and 1.0.
Movement was incorporated by adding to the objects’ original distance from the



t30 R. M. ENGEMAN AND J. F. BROMAGHIN

transect line according to a movement function. We decided that a reasonable
movement function would be one where the objects closest to the observer
transect line) would move the furthest. We also felt it reasonable to base the
iavcment on the functional form of the normal distribution. Thus, to model
nevement we added to the object’s distance from the transect according to the

.unction

exp(—x*/ps) (13)

’

p3/ 2

where x is the original perpendicular distance to the transect line and py is a
parameter that determines the extremity of movement. For p;, we considered the
vatues 025, 0.50, 1.0 and 2.0. The values 0.25 and 0.50 represent extreme
novement, 1.0 represents moderate movement, and 2.0 represents light movement.
The Fourier sertes estimates were calculated according to the formulae and
mcthods in Burnham et al. (1980). There are many available methods for
~timating Wetbull parameters (e.g.. sce Engeman and Keefe, 1982, 1985). Maxi-
1aim hikelthood was used to estimate the Wetbull density parameters because it
coriorms well (Engeman and Keefe, 1982, 1985) and 1s widely accepted. The
tormulue and iterative algorithm for calculating the Weibull maximum likelihood
estimates were the same as described in Engeman and Keefe (1982). The criteria
v ~elected for comparing the performance of the density estimators is the relative
wl mean squared crror {RRMSE) which 1s calculated by

(N _ M2 1/2
RRMSE:(*[D-I-Q-’—' /Dl> (19)

;
/

where D is the truc density, D is its estimate, and [ is the number of iterations in
the: simulation.

At cach iteration of each simulation a new population of objects was defined.
{Density was estimated without movement using the Fourier series estimator and
the Weibull estimator. Movement was then included and the density estimated
again by both methods. Each simulation run was comprised of 1000 iterations
tzenerally much larger than most line transect simulation studies), which provided
soud precision as indicated by RRMSE results remaining almost constant over the
movement levels in each density by parameter sighting combination.

Forty-five simulation runs were made. For the sighting function in Eg. (16), all
combinations of the three densities by the four movement parameters by the three
sighting parameters were simulated (36 runs). Nine additional simulation runs
were made for the sighting function in Eq. (17). These runs only considered the
moderate movement situation (p, = 1) for all combinations of the three densities by

the three sighting parameters.
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Table I  RRMSE results when using the sighting function in Eq. 16

Movement  Sighting Density =2 Density =4 Density =8
parameter  parameter

Without With Without With Without With
movement movement movemen{ movemenl movement  movemen(

w* F w F w F 4 E 34 F 4 F

0.5 049 036 091 1.04 048 028 091 105 041 021 092 1.03
0.25 15 025 033 069 1.02 022 022 068 100 020 018 067 1.02
3.0 0.18 030 0.57 .16 0.17 022 058 112 0.17 0.14 0.58 1.07
0.5 049 040 086 .10 048 029 087 110 043 021 087 1.09
.30 1.5 025 032 055 1.09 022 022 032 Li16 021 018 049 .20
30 018 029 041 L10 017 020 041 15 017 016 041 1.24
0.3 0.49 038 068 072 049 029 069 077 042 023 0.67 090
1.00 1.5 025 032 036 .15 022 021 033 L16 020 020 029 1.16
30 0.17 031 026 LIS 0.17 022 026 117 017 016 026 .17
0.5 049 037 0.57 048 049 029 057 0358 042 022 051 096
200 1.3 0.25 033 029 055 023 023 02 068 021 017 022 092
30 0.17 030 020 064 0.17 022 020 075 017 015 026 1.17

v and F oagnily results from the Webull and Founer senes estimators, respectively.
4.3 Simudation Results

The RRMSE results from the 36 simulation runs for the sighting function in Eq.
(16) are given in Table 1. As would be expected, the RRMSEs calculated prior to
the addition of movement in each simulation remained nearly constant over the
four movement levels in each density by sighting parameter combination (e.g.,
consider the without movement column under Density =2 and note that each time
the sighting parameter i1s 0.3, the Weibull RRMSE is 0.49). Some of the results
from the no movement situations are noteworthy. For the sighting parameter of
py=0.5, the RRMSE for the Fourier series estimates ranged from 0.21 to 0.40
whereas the RRMSE from the Weibull estimates were always higher, ranging from
0.41 to 0.49. However as the sighting parameter p, was increased to a value of 3.0,
the RRMSE for the Weibull estimate approached that of the Fourier series
(ranging from 0.17 to 0.18 versus 0.14 to 0.3!1 for the Fourier series) with the
Weibull estimator’'s RRMSE surpassing that of the Fourier series as the density
decreased (ranging from 0.17 to 0.18 versus 0.29 to 0.31 for the Fourier series
when the density equalled 2). This indicates that for the situation when .no
movement occurs, the Weibull estimator may perform adequately, at least in low
density situations.

When movement (even light movement) was incorporated the Fourier series
estimator’s RRMSE dramatically increased. The RRMSEs for the Weibull estima-
tor also increased when movement was added; however, the increase was not as
dramatic. In many cases the RRMSE for the Fourier series estimator were over 3
or 4 times as great as that for the Weibull estimator. As a gross overview to the
simulation results, the mean RRMSEs over all simulation runs when there is no
movement was 0.29 for the Weibull estimator versus 0.25 for the Fourier seres
estimator. With the addition of movement the overall mean RRMSE for the
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Table 2 Analysis of variance of observed RRMSE values in Table | where
estimation procedure s the fourth factor

Source of variation : Degrees RRMSE RRMSE
of without movement  with movement
freedom

Mean F-ratio Mean F-ratio

square square
Movement parameter (MP) 3 0.00008 097 045501 398.54
Sighting parameter (SP) 2 0.22331 2600.26 0.08569 75.06
MP x SP 6 0.00007 0.82 0.01198 (0.49
Density (D) 2 0.05438  633.27 0.02613 22.89
MPx D 6 0.00008 0.92 001833 16.06
SPxD 4 0.00133 1552 0.00158 (.38
MP xSP« D 12 0.00004 0.41 0.00149 1.30
Estimator (E) l 0.02136  248.67 4.03753 3536.53
MP x E 3 0.00006 0.73  0.07311 64.04
SPxE 2 0.08546  995.11 0.50451 4190
DxE 2 0.01948  226.88 0.04097 35.88
MP <SP < E 6 0.00004 046 0.01875 16.42
MPxDxE 6 0.00005 0.62 0.02026 17.75
SPxDxE 4 0.00057 6.64  0.00054 0.47
Error 12 0.00009 0.00114

Weibull s 0.52 which 1s substantially lower than that for the corresponding
Fourier series mean of 1.00. As density and/or sighting parameters (p,) increased,
the RRMSE for both estimators improved (decreased). However, that for the
Weibull estimator improved more rapidly and to a larger extent than that for the
Fourier series estimator.

Although inspection of Table | indicates patterns of relative performance for the
two estimation methods, some statistical analyses of the RRMSE results seem in
order. A four-factor factorial analysis of variance was performed for the movement
and no movement situations. The four factors in the analyses were estimation
procedure, density, movement parameter and sighting parameter.

[nspection of the first set of mean squares in Table 2 reveals that the sighting
parameter contributes by far the most to total variation when there is no
movement. Also important, in descending order of mean squares, are the
interaction between sighting parameter and estimator, density, estimator and the
density-estimator interaction. This suggests, as indicated in the above discussion,
that without movement the key to adequate estimation lies in ability to detect the
objects more than anything else. The density at which the objects actually occur
also affects the ability to estimate density. Estimation method and its integaction
with both of these factors affect the density estimates.

In contrast with the first haif of Table 2, the second half, which investigates the
effects of movement, indicates that the most important contribution to density
estimation is the method of estimation. The effect due to the estimation method
has a mean square larger than the other 13 effects combined. Next most important
(distantly) is the sighting parameter by estimation method interaction followed
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Table 3 RRMSE results when using the sighting function in Eq. 17 and the movement
parameter is fixed at 1.00

Sighting Density =2 Density =4 Density=8
parameter

Weibull  Fourter  Weibull  Fourier  Weibull  Fourier

Without 0.50 0.61 041 0.63 0.35 0.61 0.28
movement  0.75 0.49 0.35 0.50 0.30 0.51 0.25
1.00 0.40 0.30 0.44 0.27 045 0.22
With 0.50 0.77 0.84 0.78 093 0.77 1.06
movement  0.75 0.63 0.95 0.64 1.08 0.64 1.9
1.00 0.53 1.05 0.56 1.10 0.57 1.10

Table 4 Analysis of variance of observed RRMSE values in Table 3 where
esimation procedure is the third factor

Source of variation Degrees RRMSE RRMSE
of without movement with movement
[freedom -
Mean F-ratio Mean F-ratio
square square
Sighting parameter (SP) 2 0.02774 1997.20 0.00240 1.42
Density (D) 2 0.00254 182.80 0.00927 5.49
SPxD 4 0.00035 25.00 0.00077 045
Estumator (E) l 0.20267 1459240 0.60867 360.40
SP<E 2 0.00417 30040 0.05002  29.62
DxE 2 0.00604 43480 0.00549 325
Error 4 0.00001 0.00169

closely by the movement parameter. The F-ratios are also presented for both
halves of Table 2 for the reader’s information, although the theoretical justification
for their use on RRMSEs is not available nor suggested.

Table 3 contains the RRMSE results from the 9 simulation runs that used the
sighting function given in Eq. (17). Only the moderate movement (p; =1) situation
was considered. With movement, the relative comparisons between the Weibull
and Fourier series estimators remain the same as for the simulations using the
sighting function from Eq. (16), where the Weibull estimator appears substantially
superior to the Fourier series estimator. However, when there is no movement, the
Fourier series estimator is consistently superior to the Weibull estimator. With
movement the overall mean RRMSE for the Weiball estimator is 0.65 versus 1.02
for the Fourier series estimator. Without movement the overall mean for the
Weibull is 0.52 and that for the Founer series is 0.30.

A three-factor factorial analysis of variance (only one level of movement was
considered) was used to study the movement and no movement RRMSE results in
Table 3. I[nspection of Table 4 indicates that in both the without and with
movement cases. estimation method contributes the most to total vanation.
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Sighting ability also seems to contribute when there is no movement, but not
when there 1s movement.

CONCLUSIONS

The results indicate that the Weibull method is superior to the Fourier series
estimator, even when only light movement is involved. However, the Fourier series
estimator is known to have problems when there is movement (Burnham et al,
1980). Additionally, the Weibull estimator had superior performances for some
(smaller) densities and sighting function parameterizations where no movement is
involved. The Weibull estimator consistently outperforms the Fourier series
estimator when movement is involved.

The purpose of this paper was to present a new approach to density estimation
irom line transect data where the animals move away from the line in response to
the observer. We feel that this approach shows promise and we hope that it can
provide the groundwork for producing an estimation procedure that works well
for the all too frequently encountered situation of animals moving away from the
transect line in response to the observer and also when no such movement exists.
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